skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hirschman, Jack"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this Letter, we introduce FusionNet, a multi-modality deep learning framework designed to predict and analyze output pulses in high-power rare-earth-doped laser systems driving parametric conversion in homogeneous guided nonlinear media. FusionNet integrates temporal, spectral, and physical experimental conditions to model ultrafast nonlinear phenomena, including parametric nonlinear frequency conversion, self-phase modulation, and cross-phase modulation in homogeneous guided systems such as gas-filled hollow-core fibers. These systems bridge physical models with experimental data, advancing our understanding of light-guiding principles and nonlinear interactions while expediting the design and optimization of on-demand high-power, high-brightness systems. Our results demonstrate a 73% reduction in prediction error and an 83% improvement in computational efficiency compared to conventional neural networks. This work establishes a new paradigm for accelerating parametric simulations and optimizing experimental designs in high-power laser systems, with further implications for high-precision spectroscopy, quantum information science, and distributed entangled interconnects. 
    more » « less
  2. Lightwave pulse shaping in the picosecond regime has remained unaddressed because it resides beyond the limits of state-of-the-art techniques, due to either its inherently narrow spectral content or fundamental speed limitations in electronic devices. The so-called picosecond shaping gap hampers progress in all areas correlated with time-modulated light–matter interactions, such as photoelectronics, health and medical technologies, and energy and materials sciences. We report on a novel nonlinear method to simultaneously frequency-convert and adaptably shape the envelope of light wave packets in the picosecond regime by balancing spectral engineering and nonlinear conversion in solid-state nonlinear media, without requiring active devices. We capture computationally the versatility of this methodology across a diverse set of nonlinear conversion chains and initial conditions. We also provide experimental evidence of this framework producing picosecond-shaped, ultranarrowband, near-transform-limited light pulses from broadband, femtosecond input pulses, paving the way toward programmable lightwave shaping at gigahertz-to-terahertz frequencies. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. We present a novel, versatile framework to generate W-level temporally shaped, near transform-limited, UV picosecond pulses via non-colinear sum frequency generation and demonstrate it producing temporally flattop, high-power UV pulses capable of enhancing femtosecond- and attosecond-level electron and Xray free electron lasers brightness. 
    more » « less
  4. We present a novel, versatile framework to generate W-level temporally shaped UV picosecond pulses via non-colinear sum frequency generation and demonstrate it producing temporally flattop, high-power UV pulses capable of enhancing femtosecond- and attosecond-level X-ray free electron lasers. 
    more » « less